

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Chemistry (WCH14) Paper 01 Unit 4: Rates, Equillibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023

Question Paper Log Number P75068A

Publications Code WCH14_01_MS_2310

All the material in this publication is copyright.

© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT n credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewar answers showing correct application of principles and knowledge. Examiners should therefor carefully and consider every response: even if it is not what is expected it may be worthy of c

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examile the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essentia** answer

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a que correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that makes sense. Do not give credit for correct words/phrases which are put together in a meani manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the r clear
- select and use a form and style of writing appropriate to purpose and to complex subject m
- organise information clearly and coherently, using specialist

vocabulary when appropriate. Full marks will be awarded if

the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark sthis does not preclude others.

Section A (multiple choice)

Question Number	Answer	Mark
1(a)	The only correct answer is B (measurement of change in volume)	(1)
	A is incorrect because none of the gases is coloured	
	C is incorrect because there is no loss or gain of mass	
	D is incorrect because there are no bases in the mixture	

Question Number	Answer	Mark
1 (b)	The only correct answer is D (quenching followed by titrating with acid)	(1)
	A is incorrect because nothing in the mixture is coloured	
	B is incorrect because there is no change in volume	
	C is incorrect because there is no loss or gain of mass	

Question Number	Answer	Mark
2	The only correct answer is D (16)	(1)
	A is incorrect because doubling $[BrO_3^-]$ and $[Br^-]$ will both double the rate, doubling $[H^+]$ increases the rate by 2^2	
	B is incorrect because doubling $[BrO_3^-]$ and $[Br^-]$ will both double the rate, doubling $[H^+]$ increases the rate by 2^2	
	C is incorrect because doubling [BrO ₃] and [Br ⁻] will both double the rate, doubling [H ⁺] increases the rate by 2^2	

Question Number	Answer	Mark
3(a)	The only correct answer is A ([Q] Time	(1)
	$m{B}$ is incorrect because the graph shows a reaction where the rate decreases as concentration of $m{Q}$ increases	
	$oldsymbol{C}$ is incorrect because the graph shown is correct when rate is plotted against concentration of Q	
	D is incorrect because the graph shows a reaction where the rate increases as concentration of Q increases	

Question Number	Answer	Mark
3 (b)	The only correct answer is B (20s)	(1)
	A is incorrect because the half-life for a first order reaction is constant	
	C is incorrect because the half-life for a first order reaction is constant	
	D is incorrect because the half-life for a first order reaction is constant	

Question Number	Answer	Mark
4	The only correct answer is \mathbb{C} ((-gradient) $\times R$)	(1)
	A is incorrect because the gradient = $-E_a/R$	
	B is incorrect because the gradient = $-E_a/R$	
	\boldsymbol{D} is incorrect because the gradient = $-E_a/R$	

Question Number	Answer	Mark
5 (a)	The only correct answer is B (-364)	(1)
	$m{A}$ is incorrect because the value must be divided by 2 as there are 2 Cl^-	
	C is incorrect because the signs are the wrong way round giving an endothermic value	
	$m{D}$ is incorrect because the signs are the wrong way round giving an endothermic value and the value must be divided by 2 as there are 2 Cl^-	

Question Number	Answer	Mark
5(b)	The only correct answer is C (magnesium ions have a higher charge density)	(1)
	$oldsymbol{A}$ is incorrect because the radius of magnesium ions are smaller	
	B is incorrect because this is true but it does not explain the hydration enthalpy	
	$m{D}$ is incorrect because this is true but it does not explain the hydration enthalpy	

Question	Answer	Mark
Number		
6	The only correct answer is \mathbf{D} $(K_p = (pNO_2)^4 \times (pO_2))$	(1)
	A is incorrect because solids are not included in the K_p expression and the value should be raised to the power not multiplied by the number from the equation	
	${m B}$ is incorrect because solids are not included in the K_p expression	
	C is incorrect because the value should be raised to the power not multiplied by the number from the equation	

Question	Answer						Mark
Number							
7	The only correct answer is D (Acid 1	Conjugate base of Acid 1	Acid 2	Conjugate base of Acid 2)	(1)
		HCl	Cl ⁻	HCOOH ₂ ⁺	НСООН		
	A is incorrect because the conjugate bases are the wrong way round B is incorrect because HCOOH ₂ ⁺ is an acid not a base and HCOOH is a base and not an acid in this reaction C is incorrect because HCOOH ₂ ⁺ is an acid not a base and so should be exchanged with HCOOH						

Question Number	Answer	Mark
8	The only correct answer is C (the dissociation of water is endothermic, so the concentration of hydrogen ions is higher at 100°C than at 25°C)	(1)
	A is incorrect because at lower pH the concentration of hydrogen ions is higher	
	$m{B}$ is incorrect because at lower pH the concentration of hydrogen ions is higher and the reaction is endothermic	
	D is incorrect because the forward reaction is endothermic	

Question	Answer	Mark	
Number			ł
9	The only correct answer is D (4, 3, 1, 2)	(1)	l
	A is not correct because Beaker 4 has the highest pH		
	B is not correct because Beaker 4 has the highest pH		
	C is not correct because Beaker 4 has the highest pH		

Question Number	Answer	Mark
10(a)	The only correct answer is D (lithium tetrahydridoaluminate(III))	
	A is incorrect because these are the reagents for the reverse reaction	
	B is incorrect because this will not reduce a carboxylic acid	
	C is incorrect because this will not reduce the carboxylic acid to the primary alcohol	

Question Number	Answer	Mark
10(b)	The only correct answer is D (8.80 g)	(1)
	$m{A}$ is incorrect because this answer comes from swapping the $M_{ m r}$ values	
	$m{B}$ is incorrect because this assumes that 90% of methylpropanoic acid is required to give this yield	
	C is incorrect because this assumes the yield is 100%	

Question	Answer	Mark
Number		
10(c)	The only correct answer is B (anhydrous)	(1)
	$m{A}$ is incorrect because the reaction requires no catalyst	
	C is incorrect because the reaction works at room temperature.	
	$m{D}$ is incorrect because ether solvent is required for use with LiAlH4	

Question	Answer	Mark
Number		Willia
10(d)	The only correct answer is A (it can be carried out at room temperature)	(1)
	B is incorrect because a catalyst is not required	
	$m{C}$ is incorrect because the atom economy is lower as HCl is formed rather than H_2O	
	D is incorrect because the formation of toxic HCl is a disadvantage	

Question Number	Answer	Mark
11	The only correct answer is D ($\left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)
	A is incorrect because it is a single repeat unit	
	B is incorrect because it is missing a dicarboxylic acid group	
	C is incorrect because the groups are reversed	

Question Number	Answer	Mark
12	The only correct answer is D (44.0632 43.9898)	(1)
	A is not correct because 27.9949 is the mass of CO and 29.0395 is the mass of C_2H_5 B is not correct because 27.9949 is the mass of CO and 29.0395 is the mass of C_2H_5 C is not correct because 43.9898 is the mass of propane and 44.0632 is the mass of carbon dioxide	

Question Number	Answer	Mark
	The subsection of the control of the	(1)
13(a)	The only correct answer is B (0.38)	(1)
	A is incorrect because this is the ratio of the spot to the top of the chromatogram slide	
	C is incorrect because this is the ratio of the distanced travelled by X compared to Y	
	$m{D}$ is incorrect because this is (1 – the correct answer)	

Question Number	Answer		Mark		
13(b)	The only correct answer is C (A is incorrect because a stronger attract B is incorrect because a stronger attract	ction to the stationary phase mean	es it will move more slowly)	(1)
	D is incorrect because a weaker attract	tion to the mobile phase means it t	will move more slowly		

(Total for Section A = 20 marks)

Section B

Question Number	Answer	Additional Guidance	Mark
14(a)(i)	An answer that makes reference to the following point:		(1)
	2-hydroxypropanenitrile	Allow 2-hydroxypropannitrile Allow 2-hydroxypropanitrile Do not award 2-hydroxo versions of allowable answers Do not award 2-hydroxyl versions of allowable answers Do not award Hydroxy-2-propanenitrile Do not award nitride versions of allowable answers Do not award additional numbers e.g. 2-hydroxypropane-2-nitrile Ignore additional spaces, omission of hyphen, use of comma instead of hyphen e.g. 2 hydroxy propanenitrile	

Question Number	Answer		Additional Guidance	Mark
14(a)(ii)	An answer that makes reference to the following points: • structure of the intermediate carbanion including		Intermediate is stand alone and scores (1) Allow –CH ₃ Allow –CN	(4)
	negative charge anywhere on the ion or outside a bracket around the ion	(1)	Ignore absence of lone pair Triple bond does not need to be shown Do not award C≡N−C	
	Step 1 mechanism			
	• lone pair of electrons on C of C≡N⁻		H 0δ-	
	• arrow from lone pair on C of C \equiv N $^-$ to C(δ +) in ethanal		δ+ C :C≡N	
	• arrow from C=O bond to, or just beyond, O		н—ċ—н 	
	• dipole on C=O			
	Step 2 mechanism		o. H _c≡N	
	• lone pair on O		H — Ċ —C≡N	
	arrow from lone pair on O of intermediate to H of H−C≡N / HCN		н — н —	
	• arrow from H–C bond to C, or just beyond C, of H–C≡N / HCN		Ignore dipole on HCN even if incorrect Do not award Step 2 point 2 for +ve charge on H For the mechanism all 7 points scores 3 marks 4, 5 or 6 points scores 2 marks	
		(3)	2 or 3 points scores 1 mark Only 1 step point scores 0 step marks	

Question Number	Answer		Additional Guidance	Mark
14(a)(iii)	An answer that makes reference to the following points:		Mark independently	(2)
	This mark is for the description of nucleophilic attack • in the first step of the reaction the (negative) cyanide ion / ¬C≡N attacks a δ+ centre / seeks out regions of low electron density	(1)	Allow donates a pair of electrons Allow seeks out positive charge / centre Allow carbon (of the C=O) is positive Ignore acts as a nucleophile Ignore general descriptions of nucleophile which are not specific to CN ⁻ Do not award just CN (with no charge)	
	This mark is for the description of addition • two substances join together to make one	(1)	Allow CN^- is added onto the ethanal with nothing substituted / eliminated / with no other product formed. Allow there is only one product / no other molecule is formed Allow there are fewer products than reactants Allow hydrogen cyanide and ethanal join together Allow unsaturated compound becomes more saturated Allow a π (pi) bond is broken and (two) single bonds are made Allow HCN is joined/bonded onto ethanal Ignore just HCN / CN^- is added onto the ethanal Ignore added	

Question Number	Answer	Additional Guidance	Mark
14(b)	An answer that makes reference to the following points: • because the product is a racemic mixture / equal concentrations of both enantiomers are formed • as the cyanide / nitrile ion attacks / approach from	Marks are standalone Allow two mirror images are formed in equal amounts / concentrations	(2)
	above and below the plane of the C=O bond equally (1)	Accept can attack / approach equally from either side / both sides / opposite sides / top and bottom of the plane of the C=O bond Ignore 'both directions' or 'two directions' without 'opposite' Do not award from any sides	

(Total for Question 14 = 9 marks)

Question Number	Answer		Additional Guidance	Mark
15(a)(i)			Example of calculation	(3)
	 calculation of moles of oxygen at equilibrium 	(1)	$= 7.000 \div 32 = 0.21875 / 0.219 \text{ (mol)}$ Allow 7/32	
	 calculation of moles of NO at equilibrium 	(1)	= moles of oxygen x 2 = 0.4375 / 0.438 (mol) Allow 7/16	
	• calculation of moles of NO ₂ at equilibrium	(1)	= total moles – moles of O_2 – moles of NO = $0.69625 - 0.21875 - 0.4375 = 0.0400$ (mol) Allow TE throughout Ignore SF	

Question Number	Answer	Additional Guidance	Mark
15(a)(ii)		Example of calculation	(4)
	• divides the moles of the three substances by 15 to find the concentrations (1)	$[NO_2] = 0.0400 \div 15 = 0.0026667 / 2.6667 \times 10^{-3} \text{ (mol dm}^{-3})$ $[NO] = 0.4375 \div 15 = 0.029167 / 2.9167 \times 10^{-2} \text{ (mol dm}^{-3})$ $[O_2] = 0.21875 \div 15 = 0.014583 / 1.4583 \times 10^{-2} \text{ (mol dm}^{-3})$ Allow TE on incorrect values in (a)(i)	
	• gives the formula for K_c (1)	= $[NO_2]^2 \div [NO]^2[O_2]$ Allow an expression showing moles \div V for each substance Do not award round brackets Do not award K_p expressions	
	• substitution of concentrations in the expression given in M2 (1)	$K_c = 0.0026667^2 \div (0.029167^2 \times 0.014583)$ $K_c = 7.1113 \times 10^{-6} \div (8.5071 \times 10^{-4} \times 1.4583 \times 10^{-2})$ Award M2 for the correct expression if no formula has been given Allow TE on incorrect formula in M2 Allow TE on incorrect values calculated in M1 Allow TE on moles in (a)(i) used without converting to concentration	
	• calculation of final value including units (1)	= 0.57320 / 5.7320 × 10 ⁻¹ dm ³ mol ⁻¹ / mol ⁻¹ dm ³ Allow TE on incorrect formula in M2 0.038213 dm ³ mol ⁻¹ (not ÷ 15) scores (3) Correct answer with some working scores (4) Ignore SF except 1 SF in final answer	

Question Number	Answer		Additional Guidance	Mark
15(b)			Example of calculation	(3)
	• rearrangement of $pV = nRT$	(1)	$T = pV \div nR$ Allow with values substituted in	
	 conversion of volume in dm³ to m³ and moles of gas = 0.69625 	(1)	$15 \text{ dm}^3 = 0.015 / 1.5 \times 10^{-2} \text{ m}^3 / 15 \times 10^{-3} \text{ m}^3$	
	• calculation of final value	(1)	= (200,000 × 0.015) ÷ (0.69625 × 8.31) = 518.51 / 519 (K) Allow use of 8.314 rather than 8.31	
			Allow conversion of pressure to kPa and use of dm ³ giving = $(200 \times 15) \div (0.69625 \times 8.31)$	
			= 518.51 / 519 (K) Allow 245.5(1) °C / 246 °C	
			518510 / 519000 (no conversion) scores (2)	
			If given in °C units must be given	
			Allow TE on incorrect moles of gas and volume	
			Do not award 518(K) or 519°C	
			Correct answer with some working scores (3) Ignore SF except 1 SF	

Question Number	Answer	Additional Guidance	Mark
15(c)(i)	An answer that makes reference to the following point: • the reactants / NO and O ₂ are colourless but the product / NO ₂ is reddish brown / coloured	Allow just NO / O_2 is colourless and NO ₂ is brown Allow just nitrogen dioxide / product is reddish brown / coloured / dark colour Allow any combination of yellow, red, orange and brown for the colour of NO ₂ Allow measure the time for the brown gas to form Allow the reaction goes from colourless to brown Ignore just 'there will be a colour change' / mixture will darken Ignore NO ₂ is a different colour form NO and O ₂	(1)
		Do not award NO is coloured so there is a colour change Do not award NO is yellow / red / orange / brown	

Question Number	Answer	Additional Guidance	Mark
15(c)(ii)		Example of calculation	(2)
	 rearrangement of rate equation 		
	expression and inserting values	$= 6.87 \times 10^{-4} \div ((6.50 \times 10^{-2})^2 \times 1.25 \times 10^{-2})$	
	(1)		
	• calculation of <i>k</i>	$= 13.008 / 13.0 \text{ dm}^6 \text{ mol}^{-2} \text{ s}^{-1}$	
	and		
	units	Correct answer with no working scores (2)	
		Correct numerical answer with incorrect units scores (1)	
	(4	Allow units in any order	
	(1)	Allow dm ⁶ /mol ² s	
		$0.84554 / 0.846 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \text{ (not squaring } 6.50 \times 10^{-2} \text{) scores (1)}$	
		for final value and units for M2	
		Ignore SF except 1SF	

Question Number	Answer	Additional Guidance	Mark
15(c)(iii)	An answer that makes reference to the following point		(1)
	• a three particle collision is unlikely	Accept it is unlikely that more than two molecules will collide / Allow hard / difficult / impossible instead of unlikely Allow there are three molecules involved in the reaction Ignore it is a third order reaction Do not award just three moles colliding / just three reactants colliding	

Question Number	Answer		Additional Guidance	Mark
15(c)(iv)	An answer that makes reference to the following points:			(2)
	adding the two steps together gives the overall equation	(1)	Allow the two steps match the overall equation as the reactants and products are the same Allow N_2O_2 is formed then reacts / cancels out / is an intermediate Ignore just the overall equation is $2NO + O_2 \rightarrow 2NO_2$	
	the steps do not match the rate equation because the slow step should be the second step	(1)	Allow it does not match because there is no oxygen in the slow step / rate determining step / rds Allow because in this mechanism oxygen is zero order / is not first order Allow because with these steps the rate equation would be $rate = k[NO]^2$	

(Total for Question 15 = 16 marks)

Question Number	Answer		Additional Guidance	Mark
16(a)(i)			Example of calculation	(3)
			Penalise units once only	
	• calculation of the standard entropy of the reactants	(1)	$= 87.4 + (3 \times 197.6) = (680.2) (J K^{-1} mol^{-1})$	
	• calculation of the standard entropy of the products	(1)	$= (2 \times 27.3) + (3 \times 213.6) = (695.4) (J K^{-1} mol^{-1})$	
	 calculation of the entropy change (products – reactants) 	(1)	$= (695.4 - 680.2) = (+)15.2 \text{ (J K}^{-1} \text{ mol}^{-1})$	
			Ignore SF in final answer except 1 SF Correct answer with no working scores (3) Allow TE	

Question Number	Answer		Additional Guidance	Mark
16(a)(ii)			Example of calculation	(3)
	 calculation of the standard enthalpy of formation of the reactants 	(1)	$= -824 + (3 \times -111) = (-1157 \text{ (kJ mol}^{-1}))$	
	 calculation of the standard enthalpy of formation of the products 	(1)	$= 3 \times -394 = (-1182) \text{ (kJ mol}^{-1})$	
	 calculation of the enthalpy change (products – reactants) 	(1)	$= (-1182) - (-1157) = -25 \text{ (kJ mol}^{-1})$	
			-2339 (kJ mol ⁻¹) scores M1 and M2 +25 (kJ mol ⁻¹) scores M1 and M2	
			Ignore calculates the enthalpy change and then goes on to	
			calculate $\Delta S_{\text{surroundings}}$ BUT allow the equations in (a)(iii)	
			Ignore SF except 1 SF	
			Correct answer with no working scores (3)	

Question Number	Answer		Additional Guidance	Mark
16(a)(iii)	An answer that makes reference to the following points: Either (using entropy arguments) • $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$ and $\Delta S_{\text{surroundings}} = -\Delta H \div T$	(1)	Candidates may use their values instead of symbols Penalise omission of Δ once only $\Delta S_{\text{total}} = \Delta S_{\text{system}} - \underline{\Delta H}_{\text{T}} \text{ scores M1}_{\text{T}}$ Allow either equation described in words	(3)
	 (ΔH is negative so) ΔS_{surroundings} or -ΔH ÷ T is (always) positive and ΔS_{system} is positive ΔS_{total} is positive (at all temperatures) and 	(1) (1)		
	so the reaction is feasible (at all temperatures) OR (using Gibbs free energy arguments) • $\Delta G = \Delta H - T\Delta S$ • $(\Delta S \text{ is positive so}) T\Delta S \text{ or } \Delta S \text{ is (always) positive }$ and $\Delta H \text{ is negative}$	(1)(1)	Allow spontaneous	
	• ΔG is (always) negative and so the reaction is (always) feasible	(1)	Allow spontaneous Allow TE on values in (a)(i) and (a)(ii)	

Question Number	Answer		Additional Guidance	Mark
16(b)(i)	An answer that makes reference to the following points:			(4)
	• calculation of ΔS_{system}	(1)	= $((2 \times 28.3) + (3 \times 213.6)) - (50.9 + (3 \times 197.6))$ = $697.4 - 643.7$ = 53.7 (J K ⁻¹ mol)	
	• calculation of ΔH	(1)	= (3×-394) - $(-1676 + (3 \times -111))$ = $-1182 + 2009$ = $827 \text{ (kJ mol}^{-1})$	
	• conversion of ΔS_{system} or ΔH so units match		$\Delta S = 0.0537 \text{ (kJ K}^{-1} \text{ mol)}$ or $\Delta H = 827000 \text{ (J mol}^{-1})$	
	• rearrange $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$ when $\Delta S_{\text{total}} = 0$ and calculation of T	(1)	$T = \Delta H \div \Delta S_{\text{system}}$ = $\frac{827000}{53.7}$ = 15400 / 1.5400 x 10 ⁴ (K)	
			Correct answer scores (4) 15.4 (no M3) scores (3) Ignore incorrect units throughout except in final answer Allow TE thoughout except for M4 for a negative temperature	

Question Number	Answer	Additional Guidance	Mark
16(b)(ii)	An answer that makes reference to the following points:		(1)
	because this temperature cannot be achieved in a Blast Furnace	Allow the temperature in the Blast Furnace is too low Allow the temperature required is too high Ignore temperature required is very high Ignore the energy needed is too high Ignore activation energy is too high Ignore cost	

(Total for Question 16 = 14 marks)

Question number	Answer		Additional guidance	Mark	
*17a	This question assesses the student's ablogically structured answer with linkage. Marks are awarded for indicative cont structured and shows lines of reasonin. The following table shows how the maindicative content. Number of indicative marking	ges and fully sustained reasoning. ent and for how the answer is g.	Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning).	(6)	
	8	adicative marking points 4 3 2 1 0	If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).		
	The following table shows how the marks should be awarded for structure and lines of reasoning Number of marks awarded for structure of answer and sustained lines of reasoning Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout		In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks 3 or 4 indicative points would get 1 reasoning mark 0, 1 or 2 indicative points would get 0 reasoning marks. If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). Comment: Look for the indicative marking points first,		
	Answer is partially structured with some linkages and lines of reasoning Answer has no linkages between points and is unstructured	0	then consider the mark for the structure of the answer and sustained line of reasoning		

Indicat	tive content	1 IP for each test and positive result,
		1 IP for the compound and the functional group.
		Compound IP dependent on correct test or very near miss
•	IP1 sodium carbonate solution / sodium hydrogencarbonate solution gives fizzing (due to the formation of carbon dioxide)	Allow react with alcohol and (conc) H ₂ SO ₄ and fruity smell for IP1 BUT deduct one reasoning mark (as ethyl ethanoate also has a fruity smell) Allow reactive metal such as magnesium giving fizzing but do not award sodium / potassium Allow produces gas Ignore produces CO ₂ / bubbling through limewater
•	IP2 identifies butanoic acid is the only (carboxylic) acid / compound with an acidic proton / only compound with —COOH	Allow butanoic acid is a carboxylic acid
•	IP3 Tollens' reagent / ammoniacal silver nitrate gives a silver mirror	Accept Fehling's / Benedict's test gives a red precipitate
•	IP4 identifies 4-hydroxybutanal, which is the only aldehyde / only compound containing –CHO	Allow has a carbonyl group which can be oxidised Allow 4-hydroxybutanal is an aldehyde
•	IP5 iodine and sodium hydroxide (solution) gives a yellow precipitate / antiseptic smell	Allow 'use of the triiodomethane / iodoform test / iodoform reaction' / alkaline iodine
•	IP6 identifies 3-hydroxybutanone, which is the only compound with a CH ₃ CO– group / only compound with a methyl ketone group	Accept is the only compound with a secondary OH group attached to a methyl group
		If IP3 (and IP4) OR IP5 (and IP6) have been scored,
		Allow 2,4 DNP and red/orange ppt as an alternative to the
		other pair of IPs (IP3 & IP4 or IP5 & IP6) BUT deduct 1
		reasoning mark
		Ignore Brady's reagent / 2,4 DNP other than as above

Ignore indicator / PCl ₅ / hydrolysis of ethyl ethanoate /	
acidified potassium dichromate(VI) / ethyl ethanoate has a	
fruity / gluey smell	

Question Number	Answer	Additional Guidance	Mark
17(b)(i)	An answer that makes reference to the following point:		(1)
	they / all (four isomers) have four carbon environment / produce four peaks	Allow they have the same number of peaks Allow they all have four carbons in different environments Allow they / all (four) have the same number of carbon environments / peaks Ignore just they all have four carbons Ignore they have the same molecular formula Ignore they have the same proton environments Ignore they all have five different proton environments Do not award they have the same peaks Do not award the wrong number of carbon atoms Do not award all have four different proton environments	

Question Number	Answer			Mark		
17(b)(ii)			Name	Skeletal structure	Number of peaks	(3)
	Two correct numbers of peaks	(1)	butanoic acid		4	
	Third correct number of peaks	(1)	4-hydroxybutanal		5	
	Fourth correct number of peaks	(1)	ethyl ethanoate		3	
			3-hydroxybutanone		4	

Question Number	Answer	Additional Guidance	Mark
17(b)(iii)	An answer that makes reference to the following point:		(1)
	 butanoic acid / CH₃CH₂CH₂COOH and 	If both are given, both must be correct May be shown on a labelled diagram Allow any formula showing structure including skeletal formula to identify the acid	
	the hydrogen / proton in COOH	Allow COOH to indicate the proton	
		If name and formula are given both must be correct Do not award positive ions such as [COOH] ⁺	

Question Number	Answer	Additional Guidance	Mark
17(b)(iv)	An answer that makes reference to the following points: • the quintet results from a hydrogen with four	This marking point is to justify the quintet.	(2)
	hydrogens on adjacent carbons / the hydrogen is split by four other hydrogens (1)	This may be scored within M2 Ignore next to a carbon with 4 hydrogens attached?	
	because 4-hydroxybutanal has (a carbon with) a hydrogen / two hydrogens with four hydrogens on adjacent carbons	This marking point justifies 4-hydroxybutanal as the isomer. May be shown by a diagram indicating the either the hydrogens giving the signal or the hydrogens causing the	
	(1)	quintet in some way for example	
		H C C C OH	
		Do not award 4-hydroxybutanal and arguments related to having 5 hydrogen environments	

(Total for Question 17 = 13 marks)

(Total for Section B = 52 marks)

Question Number	Answer	Additional Guidance	Mark
18(a)(i)		Allow any alternative methods Ignore throughout $-\log_{10}0.00120 = 2.9$	(3)
	Route 1 – Solving the expression to find [H ⁺]		
	• M1 expression for K_a (1)	$K_{\rm a} = \underline{[C_4 H_9 COO^-][H^+]}$ $[C_4 H_9 COOH]$	
		Allow use of [H ⁺] ² [HA] and / or [A ⁻] Allow correct rearranged expression	
	 M2 uses expression to calculate [H⁺] 	$= \sqrt{1.38 \times 10^{-5} \times 0.12}$ This also scores M1	
		= $0.0012869 / 1.2869 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$	
	Then Either • M3 calculates pH (1	$= -\log_{10}0.0012869$ $= 2.8905 / 2.9$	
	Or	$= 0.0012589 / 1.2589 \times 10^{-3}$	
	• M3 calculates [H ⁺] from given pH (1	- 0.0012367 / 1.2367 × 10	
	Or • M3 calculates [C ₄ H ₉ COOH] (1)	$= \frac{0.0012869^2}{1.38 \times 10^{-5}} = 0.12001$	
	Or		

M3 uses Henderson-Hasselbalch equation to find pH	(1) $ \begin{aligned} pH &= pKa + log_{10}([CH_3COO^-] / [CH_3COOH]) \\ or \\ pH &= -log_{10}Ka + log_{10} [CH_3COO^-] - log_{10} [CH_3COOH] \\ or \\ pH &= -log_{10}(0.0000138) + log_{10}0.0012869 - log_{10}0.12 \\ and \\ pH &= 4.8601 + -2.8905 + 0.92082 = 2.8904 \end{aligned} $
Route 2 – Equating expression for $[H^+]$ to expression for pH • expression for K_a	(1) $K_a = \frac{[C_4 H_9 COO^-][H^+]}{[C_4 H_9 COOH]}$
 gives a mathematical expression relating pH and [H⁺] equates expression to calculate [H⁺] to 10^{-pH} or equates expression to calculate [H⁺] to pH 	(1) $pH = -log_{10}[H^+]$ or $[H^+] = 10^{-pH}$ $10^{-2.9} = \sqrt{1.38 \times 10^{-5} \times 0.12}$ or $2.9 = -log_{10}\sqrt{1.38 \times 10^{-5} \times 0.12}$
	Do not award a statement that $-\log_{10}0.00120 = 2.9$

Question Number	Answer		Additional Guidance	Mark
18(a)(ii)	An answer that makes reference to the following points: EITHER Route 1 • estimates concentration of H ⁺	(1)	Allow alternative methods Allow TE throughout as long as the final pH is less than 13 and greater than 9 $K_{\rm w} = [{\rm H^+}][{\rm OH^-}]$ $[{\rm H^+}] = 1.0 \times 10^{-14} \div 0.1 = 1.0 \times 10^{-13} ({\rm mol \ dm^{-3}})$	(2)
	calculates pH and so pH must be less than 13 as concentration diluted (by pentanoic acid solution / by reaction with pentanoic acid)	(1)	pH = 13 Ignore incomplete dissociation of alkali	
	OR Route 2 • estimates pOH	(1)	$= -\log_{10}[OH^{-}] = 1$	
	calculates pH and so pH must be less than 13 as concentration diluted (by pentanoic acid solution / by reaction with pentanoic acid)	(1)	pH = 14 - pOH = 13 Ignore incomplete dissociation of alkali	
	OR			

Route 3

- calculates the concentration of OH⁻ in 75 cm³ assuming none has reacted
- calculates pH of this concentration

(1)

(1)

 $-\log_{10}[OH^{-}] = 1.1761$ pH = 14 - 1.1761 = 12.824(which is less than 13) Or $[H^+] = 1.0 \times 10^{-14} \div 0.066667 = 1.5 \times 10^{-13}$ $pH = -log_{10}[H^+] = 12.824$

[OH⁻] = moles of OH⁻ added – moles of pentanoic acid Volume of water

 $[OH^{-}] = 0.00500 - 0.00300 = 0.026667 \text{ (mol dm}^{-3})$ $75 \div 1000$

 $pOH = -log_{10}[OH^{-}] = 1.574$ pH = 14 - pOH = 14 - 1.574 = 12.426 $[H^+] = 1.0 \times 10^{-14} \div 0.026667 = 3.75 \times 10^{-13}$ $pH = -log_{10}[H^+] = 12.426$ (which is less than 13)

OR

Route 4

- calculates concentration of OH⁻ after addition of 50 cm³ to the pentanoic acid
- calculates pH

Question Number	Answer		Additional Guidance	Mark
18(a)(iii)			Example of calculation	(2)
	(Neutralisation should occur at 30 cm ³ because)			
	calculation of number of moles of pentanoic acid	(1)	$=0.12 \times \frac{25}{1000} = 0.003 / 3.0 \times 10^{-3} \text{ (mol)}$	
	EITHER		1000	
	calculation of volume of potassium hydroxide		$= 0.003 \times 1000 = 30 \text{ (cm}^3\text{)}$	
	OR		0.1	
	calculation of moles of potassium hydroxide assuming volume is 30 cm ³	(1)	$= 0.100 \times \underline{30} = 0.003 / 3.0 \times 10^{-3} \text{ (mol)}$	

Question Number	Answer	Additional Guidance	Mark
18(a)(iv)	An answer that makes reference to the following point:		(1)
	the titration between a weak acid and a strong base (results in pH greater than 7 / alkaline pH at the equivalence point)	Accept the product of the neutralisation / the potassium pentanoate / the pentanoate ion / the salt of weak acid forms an alkaline solution when dissolved in water	
		Allow $C_4H_9COO^- + H_2O \rightleftharpoons C_4H_9COOH + OH^-$ Allow some H^+ (from water) will combine with $C_4H_9COO^-$	

Question Number	Answer	Additional Guidance	Mark
18(a)(v)	An answer that makes reference to the following points:		(2)
	• at 15.0 cm³ the concentration of pentanoic acid and pentanoate ion are equal / the pentanoic acid has been half-neutralised / this is the half-neutralisation point (1)	Accept this is the half-equivalence point Allow numbers of moles of both = 0.0015 (mol) Allow concentration of both = 0.0375 (mol dm ⁻³) This can be scored from a full buffer calculation	
	• (at the half-neutralisation point) $pH = pK_a$ and calculation of pH (1)	$=-log_{10}1.38\times 10^{-5}~=~4.8601/4.9$ The value of 4.9 from a full buffer calculation scores M2 Ignore pH = $-log_{10}1.2589\times 10^{-5}~=~4.9$ Ignore SF except 1SF	
		Accept use of Henderson-Hasselbalch. All of the following would score M1 and the first half of M2 $pH = pK_a + log_{10}\underline{0.0375}$ 0.0375 $pH = pK_a + log_{10}1$ $pH = pK_a + 0$	
		Common incorrect calculations give values of 2.82, 3.14 and 4.35. These will generally score (0) BUT look for both moles or both concentrations calculated to score M1	

Question Number	Answer		Additional Guidance	Mark
18(b)	An answer that makes reference to the following points:			(3)
	• because this region is a buffer / is the buffering region	(1)	Do not award the addition of buffer	
	 because there is a large reservoir of undissociated pentanoic acid (and pentanoate ions) in solution 	(1)	Allow the concentration of pentanoic acid is high Ignore C ₄ H ₉ COOH and C ₄ H ₉ COO ⁻ are both present in solution	
	EITHER		Solution	
	• added OH ⁻ reacts with H ⁺ and pentanoic acid dissociates		Allow equations $H^+ + OH^- \rightarrow H_2O$	
	and		$C_4H_9COOH \rightleftharpoons C_4H_9COO^- + H^+$ Allow descriptions using formulae	
	keeping the concentration of H ⁺ (almost) constant		Allow ratio of [C ₄ H ₉ COO ⁻] to [C ₄ H ₉ COOH] hardly changes	
	OR			
	pentanoic acid reacts with the small quantity of hydroxide ions added	(1)	Allow balanced equation C ₄ H ₉ COOH + OH [−] ⇒ C ₄ H ₉ COO [−] + H ₂ O Allow descriptions using formulae	
	and			
	keeping the concentration of H ⁺ (almost) constant		Allow ratio of [C ₄ H ₉ COO ⁻] to [C ₄ H ₉ COOH] hardly changes	
			Ignore just quoting the Henderson-Hasselbalch equation without explanation	

Question Number	Answer		Additional Guidance	Mark
18(c)(i)	An answer that makes reference to the following points:		Allow answers describing colour at the pH values OR volumes of KOH(aq) added	(3)
	at the start of the titration the solution will be red	(1)	Allow it will be red at key point 1 Allow it will be red between key points 1 and 2 Allow at / before pH 3.2	
	• it will change to orange before key point 2 / in the buffering region / at pH 3.2 and remains orange in the buffering region / until about 25 cm ³ of KOH is added / until the pH reaches 4.4	(1)	Allow it changes to orange after adding a small volume / a few cm³ of KOH and remains orange until just before key point 2 / until about 20cm³ are added Allow it gradually changes (from red) to orange around key point 2 / between and key points 1 and 2 / 3 Allow any volume of KOH up to 5cm³ for the change to orange and from 15-25 cm³ for change to yellow	
	• it will be yellow before the neutralisation point / before the vertical portion of the graph / before key point 3 / when pH is (about) 4.4 and is still yellow at key point 4	(1)	Allow it changes to yellow before key point 3 / at key point 3 and stays yellow Allow it will be yellow at key point 3 and stays yellow	

Question Number	Answer		Additional Guidance	Mark
18(c)(ii)	An answer that makes reference to the following points:		M2 dependent on M1 OR the selection of bromocresol green or bromocresol blue or bromophenol blue (which will not score M1)	(2)
	bromothymol blue	(1)		
	(at the neutralisation point) there is a mixture of yellow and blue forms (of the indicator) so the solution appears green	(1)	Allow indicator is yellow in acid and blue in alkali so green (at the neutralisation point) is observed Allow indicator is yellow below pH 6.0 and blue above pH 7.6 and grren at the neutralisation point Allow green is between yellow in acid and blue in alkali	

(Total for Question 18 = 18 marks)

(Total for Section C = 18 marks)

Total for Paper = 90 marks